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Fashion image retrieval with text feedback aims to find the target image according to the reference image

and the modification from the user. This is a challenging task, as it requires not only the synergistic un-

derstanding of both visual and textual modalities but also the ability to model a wide variety of styles that

fashion images contain. Hence, the crucial aspect of addressing this problem lies in exploiting the abundant

semantic information inherent in fashion images and correlating it with the textual description of style. Rec-

ognizing that style is generally situated at the local level, we explicitly define style as the commonalities

and differences between local areas of fashion images. Building upon this, we propose a Style-guided Patch

InteRaction approach for fashion Image retrieval with Text feedback (SPIRIT), which focuses on the deci-

sive influence of local details of fashion images on their style. Three corresponding networks are designed

pertinently. The Patch-level Style Commonality network is introduced to fully leverage the semantic infor-

mation among patches and compute their average as the style commonality. Subsequently, the Patch-level

Style Difference network employs a graph reasoning network to model the patch-level difference and filter

out insignificant patches. By considering the above two networks, mutual information about style is obtained

from the interaction between patches. Finally, the Visual Textual Fusion network is utilized to integrate vi-

sual features with rich semantic information and textual features. Experimental results on four benchmark

datasets demonstrate that our proposed SPIRIT achieves state-of-the-art performance. Source code is avail-

able at https://github.com/PKU-ICST-MIPL/SPIRIT_TOMM2024.
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1 INTRODUCTION

As a classic task in the field of computer vision, image retrieval has made great progress in recent
years [16, 19, 47]. In more interactive areas such as e-commerce, users have an obvious tendency
to retrieve the items they want. At this time, only providing an image as the query cannot well
meet the needs of users [8, 21]. Therefore, fashion image retrieval with text feedback, as a branch
of conventional image retrieval where a reference image and a modification are used jointly as
a query, is thriving in these areas [33, 43, 46]. When image retrieval is applied to the field of e-
commerce, the main goal of the task is to find the product that best meets the user’s expectations
[8, 29, 37], as illustrated in Figure 1. For instance, when a user meets a fashion image, the user may
request modifications in terms of color, size, style, and so on.

The challenges of the task of fashion image retrieval with text feedback mainly lie in the fol-
lowing two aspects. First, it requires the model to fully correlate the semantic information of two
modalities of visual and text and realize the feature fusion between the two modalities [5, 52]. Sec-
ond, fashion images usually contain a variety of styles, and the model needs to be able to accurately
return a fashion image in the specific style that the user wants. Many works have contributed to
the task revolving the first challenge [5, 15, 18, 32, 48, 52, 57]. Their main concern is how to fuse the
image and text inputs into joint embedding for retrieval. Among the methods, some of the works
focus on learning composite representations of reference images and text queries to approximate
the embedding of the target image as closely as possible [5, 12, 32]. Several studies revolve around
the information contained in the fashion images, which applies fine-grained methods, or the target
detection network to extract more details [18, 41].

However, existing methods rarely address the second challenge, but the style of the fashion im-
age is crucial to whether it meets the users’ modification requirements. Although the study [37]
extends the definition of style from the field of Image Style Transfer to this task, this definition
primarily revolves around the global aspects of images, such as colors. Such a definition struggles
to encompass the specific and detailed styles present in fashion images, thereby neglecting that
style cues are generally manifested on a local level, such as distinct patterns, textures, or design
features. These local-level details are frequently identifiable within specific regions of the image
rather than uniformly distributed across the entire scene. For instance, styles like “plaid” and “de-
signed,” as illustrated in Figure 1(b), are associated with specific local regions of fashion images.
For the first row of Figure 1(b), there is a high degree of coherence among the localities of the two
shirts, indicating an overall leaning toward a formal style. In the second row of Figure 1(b), the
right-side dress exhibits variations among patches, with distinctive local details around the right
shoulder and waistband, defining it as a designed dress with stylistic differences from the left-side
counterpart. Understanding and effectively capturing these local-level stylistic details are crucial
for achieving accurate and meaningful image retrieval in the context of fashion applications.

To address the problems above, we propose a Style-guided Patch InteRaction approach for

fashion Image retrieval with Text feedback (SPIRIT). The style of a fashion image is explicitly
defined as the commonality and difference between its patches, and three networks are designed
based on the definition. Given a fashion image, Patch Sampling Strategy is first used to split the
multi-scale patches, and Patch-level Style Commonality (PSC) generates the style commonality
feature by averaging the thoroughly interacted patch features, enabling the model to better distin-
guish different fashion styles by combining the local information between patches. Then Patch-

level Style Difference (PSD) further models the differences between patches through a graph
reasoning network and filters out unimportant areas through adaptive calculation of patches’
weight, so as to distinguish between those with a sense of design that have significant differ-
ences in the local areas. Through the interaction of the features extracted from the above two net-
works, the style features containing mutual information are obtained. After the style features being
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Fig. 1. (a) Task illustration of the Fashion Image Retrieval with Text Feedback task, where a reference image

is provided along with a modification to retrieve the most relevant target images. (b) Commonalities and

differences among local areas of fashion images reflect their styles.

concatenated with the global features from the whole image, Visual-Textual Fusion (VTF) then
fully integrates the visual features containing rich semantic information with the textual features,
thus improving the mapping ability between the text description of the style and the correspond-
ing images, through the hierarchical operation of information mining within the modalities and
mapping between the modalities to the common space.

The main contributions are summarized as follows:

— Recognizing that style is generally situated at the local level, we introduce an explicit defi-
nition of style as the commonality and difference between their local parts. Accordingly, we
present a tailored approach involving three interconnected networks.

— The Patch-level Style Commonality and Patch-level Style Difference are proposed to model
the style commonality and difference features, respectively. Visual Textual Fusion network
is proposed to fully integrate the visual features containing rich semantic information with
the related textual features in a hierarchical manner.

— Our proposed approach SPIRIT achieves state-of-the-art performance on four benchmark
datasets for fashion image retrieval with text feedback.

2 RELATED WORK

2.1 Fashion Image Retrieval with Text Feedback

Image retrieval usually involves a user submitting an image and the system returning the closest
alternative [3, 16, 19, 38, 47]. Since natural language is the most fundamental form of interaction
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between a user and system, using images and modification to retrieve the target image is often
more user-friendly [8, 21, 45, 53]. When such a task is applied to fashion images, it is referred
to as Fashion Image Retrieval with Text Feedback. Numerous creative methods revolving around
this task have been proposed in recent years. Vo et al. [52] propose a method called TIRG, which
contains a residual and gating module to compose image features with textual features. Chen
et al. [8] propose a composite transformer plugged in a CNN to transform the visual features
conditioned on language semantics. Hosseinzadeh et al. [25], introduce the additional objective
function to help the network learn a better representation of the query and target image. Anwaar
et al. [2] enable the network to constrain the optimization problem by proposing a rotational
symmetry loss function. Graph Convolution Network is introduced by Shin et al. [48] to encode the
differences between the source and target images conditioned on the text. Kim et al. [32] also pay
attention to the little difference between the reference image and the target image, thus modeling
the difference between the reference and target image in the embedding space and matched with
the embedding of the text query. Goenka et al. [18] apply VinVL [59] into the proposed method
to capture the relationship between the local features of the images and the text. Baldrati et al. [5]
propose a combiner network to combine the visual and textual features from the OpenAI CLIP
[44] network. However, the above methods fail to include the style of the fashion images as a
key attribute in the task, which can significantly affect the experience of the user. In contrast, our
approach uses PSC and PSD to excavate the style of fashion images through the commonalities
and differences between patches. Then the visual features containing style semantic information,
rather than global visual features, are integrated with textual features under the use of VTF.

2.2 Vision-language Model for Fashion

Fashion tasks in the fashion domain encompass various cross-modal activities such as retrieval,
matching, and generation, akin to the broader vision-language context [24, 30, 61]. Numerous
fashion-related datasets have also been curated and released [10, 17, 22, 54, 58]. KaleidoBERT [64]
adopts a multi-stage approach to enhance the salient features of fashion items through several
single-task frameworks. Meanwhile, FashionViL [23] employs an end-to-end architecture to pre-
train the model across multiple single-task objectives, inspired by the general vision-language par-
adigm. Hou et al. [26] recognize the diverse attributes present in the e-commerce domain. They
put forward a proposition to harness the semantic essence of visual attributes in training con-
volutional networks. These networks aim to acquire attribute-specific subspaces for individual
attributes, leading to the acquisition of disentangled representations. FashionVLP [18] explicitly
leverages object detection models to extract the primary regions of fashion images. It also incorpo-
rates clothing key points, combining these attributes to enhance retrieval precision. Differing from
prior methods, our proposed SPIRIT focuses on the crucial attribute of style in fashion images. We
model the style attribute based on local information within the fashion images, without introduc-
ing additional information. This approach enhances the alignment between retrieval results and
the demands expressed in modifications, thus improving retrieval performance.

2.3 Image Style Modeling

Style plays an essential role to evaluate the performance of the model in tasks such as style transfer
[7, 27, 31, 36] and image synthesis [1, 35, 42, 63]. In the tasks above, style is often referred to as the
channel statistics that are spatially invariant, while contents are expressed by local features [37].
Huang et al. [27] propose AdaIN, which verified through experience that the two-channel statistics,
mean and variance, are highly correlated with image style. Therefore, the style of the image can
be changed using instance normalization. On this basis, Li et al. [39] point out that the covariance
matrix could better represent the style of an image. Xia et al. [55] introduce the bilateral-space
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Fig. 2. Overall architecture of our proposed approach SPIRIT, which mainly contains three networks: PSC,

PSD, and VTF. The style features containing mutual information are obtained through the interaction of the

features extracted from PSC and PSD. VTF then fully integrates the visual features containing rich semantic

information with the textual features.

Laplacian regularizer to achieve an efficient stylized model that can adapt to any style migration.
Chiu et al. [11] propose blockwise training to perform coarse-to-fine feature transformations. Lee
et al. [37] introduce the ideas from the above methods into their proposed method, with instance
normalization changing the style of the image. However, the overall style of the image is not
exactly the same as the style of the fashion image. For example, the images of minimalist style and
palace style are very similar on the whole. They are both solid colors in large areas, so the channel
statistics are also close. What sets the two styles apart, however, are some local details shown
in Figure 1(b). In contrast, our approach fully excavates the style of fashion images through the
interaction between local patches and the similarities and differences between patches, so as to
better fit the task requirements of fashion image retrieval. We explicitly define the style of fashion
images as the commonality and difference between their local parts, and we design three networks
to better handle the task of fashion image retrieval with text feedback.

3 METHODOLOGY

We propose SPIRIT, shown in Figure 2, which will be elaborated in the following four sections.
In the Image and Language Global Embedding section, we present the extraction of global fea-
tures for the reference image and modification using backbone models. In the Image Patch-level
Style Embedding section, we first elaborate on the strategy for sampling patches from the fashion
image. Based on these patches, we propose PSC and PSD to extract the style commonality and
difference features of the image, respectively. In the Fusion Representation section, we describe
how to thoroughly integrate the aforementioned features to achieve precise retrieval. The Model
Training section outlines the process details of training these models.

3.1 Image and Language Global Embedding

The features extracted through the image encoder encompass global-level aspects such as color and
shape. However, such global features are not enough to characterize the style of fashion images,
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just as the design elements of some commodities are shown in the neckline, front, and other small
local areas. Therefore, it is crucial to investigate the details of the local area of the image.

3.2 Image Patch-level Style Embedding

3.2.1 Patch Sampling Strategy. Since the style of fashion images is highly related to local details,
we apply a Patch Sampling Strategy to obtain the multi-grained patches from a given image. We
do not use the pretrained object detection network to extract the specific areas of fashion images.
On the one hand, this is set up for a fairer comparison with the existing methods. On the other
hand, the areas unrelated to clothing, such as the model’s legs and arms, could also reflect the
style of fashion images, which is also one of the differences between fashion image retrieval and
conventional image retrieval. For instance, when the proportion of the body exposed is large, the
clothes are more casual than business. We split the given image into different scales (i.e., 2 × 2, 3 ×
3, 4 × 4) similarly to sliding windows. Specific sliding dimensions can be adjusted according to the
details of commodities. In this method, we apply 2×2 and 3×3 scales to obtain a total of 13 patches.

3.2.2 Patch-level Style Commonality. The commonality of patch-level style is close to the mean
value of patches’ features. Compared to simply averaging features, the features obtained by aver-
aging the patch features after semantic information interaction between them better represent the
commonalities of a fashion image. Therefore, for patches extracted with the strategy above, we first
use the same image encoder to extract patch-level features P ={p1,p2, . . . ,pk }. Next, we propose a
Multi-Patch Interaction model (MPI) with a Transformer structure to interact patch features
and obtain the interaction feature sequencepin1 ,pin2 , . . .pink

, which can be represented as follows:

pc = Avg(MPI(P + epos )), (1)

where Avg and epos denote the average pooling and patch position encoding, respectively. For
epos , we adopt standard learnable absolute position embeddings. The MPI is constructed using
the standard multi-head self-attention and feed-forward networks [51].

3.2.3 Patch-level Style Difference. To model the differences in style between patches, a
similarity graph is built to exchange the feature information between patches. We first perform
a simple but effective self-attention mechanism [51] over the patches, which uses the average of
all patches features as the query and obtains the raw average feature pa by aggregating all the
patches. Compared to learning the differences between each pair of patches, we emphasize the
differences between patches by learning the differences between each patch and the mean feature
rather than defining this parameter based on coordinate positions, as there may be overlaps
between patches. We then take all the patch-level features and the average feature pa as graph
nodes N and follow Reference [14] to build and update the edge e between two nodes vin ∈ N

to vout ∈ N , shown as follows:

N = {p1,p2, . . . ,pk ,pa}, (2)

e (vin ,vout ;Win ,Wout ) =
e(Win vin )(Wout vout )∑

out e
(Win vin )(Wout vout )

, (3)

where Win and Wout are linear layers that pass information between incoming node vin and
outgoing node vout .

After constructing the graph nodes and related edges, we obtain the patch-level style difference
feature by updating the nodes together with edges as follows:

vL+1
in =W L

d

(∑
out

e
(
vL

in ,v
L
out ;W L

in ,W
L

out

)
· vL

out

)
, (4)
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where L denotes the number of graph reasoning layers,W L
D ,W L

in , andW L
out are linear layers in each

layer. After layer L, the node feature vL
in is replaced with vL+1

in .
After the similarity graph reasoning, the node feature pa fully exchanges comparison informa-

tion with other patches and combines the style differences among patches, denoted asp
or iдin

d
. How-

ever, our Patch Sampling Strategy will inevitably capture areas unrelated to clothing. Although
some patches of the body are beneficial to the model’s learning of style, there are still patches that

are meaningless to the results, such as blank patches. Therefore, we replace pa with p
or iдin
a in the

original N , and the importance weight wi of each patch feature is calculated to obtain the filtered

feature p
f il ter

d
as follows:

wi =
σ (BN (Wf vi ))∑

vj ∈N σ (BN (Wf vj ))
, (5)

p
f il ter

d
=

∑
vi∈N

wivi , (6)

where σ denotes the sigmoid function, BN denotes the batch normalization, and Wf denotes
a fully connected layer. To improve the universality of Patch-level Style Difference, it is also
necessary to consider the case that for some fashion images with rich details, each patch can be
crucial in determining its style. For instance, consider an e-commerce short-sleeve try-on image. If
the display includes a model wearing the item, then patches containing the model’s head or lower
body may be filtered out. However, for a flat-laid image of the short sleeve, the details of each patch
contribute to the overall style of the entire garment. When exploring the differences between
patches, it is essential to consider these diverse possibilities to enhance its retrieval performance
in real-world scenarios. Therefore, a residual-like mechanism is used to select the most important
features automatically with two self-learning parameters α and β for style differences as follows:

pd = α · p
or iдin

d
+ β · p

f il ter

d
. (7)

3.3 Fusion Representation

3.3.1 Patch-level Style Fusion. The outputs from PSC (i.e., commonality features Pc =

[pc1,pc2, . . . ,pcn] ∈ R
n×d ) and from PSD (i.e., difference features Pd = [pd1,pd2, . . . ,pdn] ∈ R

n×d

) contain attended information about patches’ style. Therefore, we need an effective method to
integrate these two local style features from patches. Following Reference [5], we use a feature
fusion method that has a simple structure but can achieve better results than many complex ones.
We first map Pc and Pd to common spaces using projection layers fc and fd (i.e., FC-ReLU-Dropout
(0.5)). The low-level interactive feature Pl is generated by a similar projection layer as follows:

Pl = fl ([fc (Pc ); fd (Pd )]), (8)

where [[fc (Pc ); fd (Pd )]] denotes the concatenation of features fc (Pc ) and fd (Pd ).
For fashion images of different styles, the commonality and differences between patches may

be of different importance. Therefore, we assign their weights by learning a dynamic parameter θ ,
and combine them with Pl to obtain the high-level interactive feature Ph as follows:

θ = fθ ([fc (Pc ); fd (Pd )]), (9)

Ph = fh(Pl ) + θ · Pc + (1 − θ ) · Pd , (10)

where fθ denotes the mapping function, which consists of a two-layer MLP (i.e., FC-ReLU-Dropout
(0.5)-FC1(1)) and a Sigmoid layer after two MLP layers. The feature Ph contains high-level style
clues from the patch-level features that pay attention to the commonality and difference of styles
between patches, respectively.
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3.3.2 Visual Textual Fusion. We concatenate the global image feature and the patch-level style
feature Ph together as total visual featureV = [v1,v2, . . . ,vm] ∈ Rm×2d and concatenate the same
textual feature extracted from the modifications to align with V , denoted as T = [t1, t2, . . . , tm] ∈

R
m×2d .
Next, the problem to be addressed is how to efficiently fuse V and T and use the fusion feature

to retrieve the closest target visual feature. Different from the method in Reference [5], we also
hold the view that features V and T can be mapped to the same common space for feature fusion,
but for the visual features with more vivid styles, the information contained is more than the in-
formation contained in the corresponding modification of the triplet, which is difficult to align in
the same representation space. Hence, we introduce a two-way feature fusion. In addition to the
direct interaction between modalities, the other path first thoroughly explores semantic informa-
tion within each modality before further engaging in cross-modal interaction. This hierarchical
approach is conducive to improve the mapping ability between the text description of the style
and the corresponding images. As a result, the proposed method can make full use of the features
of each modality and fuse them in a similar way to the Patch-level Style Fusion. We first use two
fully connected layers (i.e., FC-ReLU-Dropout (0.5)-FC (1)) forV andT and generate self-attended
features V ′ and T ′,

V ′ =

m∑
i=1

Softmax(MLP(V ))vi , (11)

T ′ =

m∑
i=1

Softmax(MLP(T ))ti . (12)

After obtaining rich attended features from each modality, we follow the same architecture of
Patch-level Style Fusion to get the low-level self-attended interactive feature r low

sel f
and interactive

feature based on the same common space r low
com , together with dynamic parameters θsel f and θcom .

The formula of the approach to get the final fusion feature rf usion is as follows:

r ′sel f = fsel f

(
rsel f

)
+ θsel f ·V ′ +

(
1 − θsel f

)
T ′, (13)

r ′com = fcom (rcom) + θcom ·V ′ + (1 − θcom)T ′, (14)

rf usion = r
′
sel f + r

′
com , (15)

where fsel f and fcom are fully connected layers.

3.4 Model Training

We apply the PSC and PSD networks to the reference-modification pairs to extract the style fea-
tures from the reference image. Afterward, we utilize Patch-level Style Fusion (PSF) to obtain
the fusion feature rf usion . For the target image, we utilize the PSC and PSD networks to extract style
features and concatenate them with the image global features to obtain the target feature rtarдet .
Following existing methods [5, 18], we employ a batch-based classification loss as the training loss
function for the PSC, PSD, and PSF networks. In this loss function, every entry within a batch
serves as a negative sample for all other entries. For a batch of B reference-modification pairs, the
loss is defined as follows:

L =
1

B

B∑
i=1

− log
expκ(r i

f usion
, r i

tarдet )∑B
j=1 expκ(r i

f usion
, r j

tarдet )
. (16)

During the inference stage of the model, we generate feature rf usion using the aforementioned
approach for the reference-modification pairs. For all the test images, we compute feature rtarдet

and then rank the test images based on the similarity between rf usion and rtarдet .
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4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Datasets. FashionIQ [54]: This is a widely used benchmark for text-conditioned image
retrieval. It consists of 77,684 fashion images crawled from the web divided into three distinct
categories: Dress, Toptee and Shirt. The dataset is organized by triplets, with a reference image,
a target image, and two crowd-sourced captions that describe the differences between the two
images. There may be a gap between these two captions, as different people have different aesthetic
interpretations. We follow the experimental setting as in References [5, 18], which constructs the
candidate set by unifying all reference and target images in the test set. Shoes [6]: This dataset
was originally proposed for attribute study from web pages, and the images have been tagged
with captions for fashion image retrieval task [21]. We use the original split in Reference [21],
which provides 10,000 training queries and 4,658 validation queries. CIRR [40]: The dataset contains
21,552 real-world images from NLVR2 [49]. There are 36,554 triplets in total, divided into three
subsets with 80% in training, 10% in validation, and 10% in testing. Fashion200k [22]: The dataset
has 172,000 training and 33,000 testing images. The process used to generate textual feedback
involves comparing attributes between image pairs and follows a simple format of “replace [sth]
with [sth].”

4.1.2 Evaluation Metrics. Following the evaluation metrics in References [5, 59], we evaluate
the performance of SPIRIT using the standard top-K recall metric for image retrieval, denoted as
R@K. In particular, we use Recall@10 (R@10) and Recall@50 (R@50).

4.1.3 Experimental Details. We choose Reference [4] as our baseline and keep the same experi-
mental setup as our baseline method [4]. It involves first pretraining the encoders and then freezing
them during the fusion phase to train the multimodal fusion model. This method enhances batch
size efficiency on the same device. We keep our setup aligned with CLIP4Cir’s [4] by maintaining
encoders freezing while training PSC, PSD, and PSF. We use Adam [34] to optimize the network.
The batch size for the CIRR dataset is set to 2048, while the rest are set to 1024. The initial leaning
rate is 4e-5 and we adopt a cosine annealing strategy to adjust it. The total number of training
epochs is 150.

4.2 Comparison with State-of-the-art Methods

Experiments on the widely used datasets are conducted to evaluate our approach and recent state-
of-the-art methods. The details of the datasets are as follows.

FashionIQ. We first evaluate SPIRIT and compare it with state-of-the-art methods on the Fash-
ionIQ dataset. The results are summarized in Table 1. Compared with the previous methods in
the table, we contribute a new state-of-the-art approach in every metric. Specifically, the aver-
age results of R@10 and R@50 in the VAL evaluation protocol and the original evaluation pro-
tocol are 62.54 and 55.54, which is 11.86% and 4.19% higher than the previous state-of-the-art
methods [24, 56] and 5.51% higher than the baseline method [4]. Due to the use of our proposed
Patch-level Style Commonality and Patch-level Style Difference networks, our proposed model
leverages the patch interaction to fully exploit the commonality and differences between patches
and utilizes the mutual information between them to effectively represent the style of fashion im-
ages. Visual Textual Fusion is further used to align rich visual information containing style with
textual features, thus establishing a mapping between fashion images containing multiple styles
and modifications.

Shoes, CIRR, and Fashion200k. Tables 2, 3, and 4 show the quantitative results on the Shoes,
CIRR, and Fashion200k datasets. The results on the three datasets show a similar trend to the results
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Table 1. Results on the FashionIQ Dataset

Method Venues
Dress Toptee Shirt Overall

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Mean

VAL [8] Evaluation Protocol

TIRG [52] CVPR 2019 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39 27.40
VAL [8] CVPR 2020 21.12 42.19 25.64 49.49 21.03 43.44 22.60 45.04 33.82
CosMo [37] CVPR 2021 25.64 50.30 29.21 57.46 24.90 49.18 26.58 52.31 39.45
DCNet [32] AAAI 2021 28.95 56.07 30.44 58.29 23.95 47.30 27.78 53.89 40.84
SAC [28] WACV 2022 28.02 51.86 26.52 51.01 32.70 61.23 29.08 54.70 41.89
ARTEMIS [13] ICLR 2022 27.16 52.40 29.20 43.64 21.78 54.83 26.05 50.29 38.17
MGUR [9] ArXiv 2022 30.60 57.46 37.37 68.41 31.54 58.29 33.17 61.39 47.28
FashionVLP [18] CVPR 2022 32.42 60.29 38.51 68.79 31.89 58.44 34.27 62.51 48.39
ComqueryFormer [56] TMM 2023 33.86 61.08 42.07 69.30 35.57 62.19 37.17 64.19 50.68

SPIRIT (Ours) — 43.83 68.86 56.60 79.25 52.50 74.19 50.98 74.10 62.54

Original Evaluation Protocol

TIRG [52] CVPR 2019 14.13 34.61 14.79 34.37 13.10 30.91 14.01 33.30 23.66
CosMo [37] CVPR 2021 21.39 44.45 21.32 46.02 16.90 37.49 19.87 42.62 31.25
MGUR [9] ArXiv 2022 24.54 50.12 29.06 55.63 20.70 45.53 24.77 50.43 37.60
FashionVLP [18] CVPR 2022 26.77 53.20 28.51 57.47 22.67 46.22 25.98 52.30 39.14
FashionViL [23] ECCV 2022 33.47 59.94 34.98 60.79 25.17 50.39 31.21 57.04 44.12
CLIP4Cir [4] CVPR 2022 33.81 59.40 41.41 65.37 39.99 60.45 38.32 61.74 50.03
FashionSAP [24] CVPR 2023 33.71 60.43 41.91 70.93 33.17 61.33 36.26 64.23 50.25

SPIRIT (Ours) — 39.86 64.30 47.68 71.70 44.11 65.60 43.88 67.20 55.54

Best scores are highlighted in bold and underlined formats.

Table 2. Results on the Shoes Dataset

Methods Venues R@10 R@50 Mean

TIRG [52] CVPR 2019 45.45 69.39 57.32
VAL [8] CVPR 2020 49.12 73.53 61.32
CosMo [37] CVPR 2021 48.36 75.64 62.00
FashionVLP [18] CVPR 2022 49.08 77.32 63.20
SAC [28] WACV 2022 51.73 77.28 64.51
MGUR [9] Arxiv 2022 53.63 79.84 66.74
ARTEMIS [13] ICLR 2022 53.11 79.31 66.21
AMC [62] TOMM 2023 56.89 79.27 68.08

SPIRIT (Ours) — 56.90 81.49 69.19

Best scores are highlighted in bold and underlined formats.

Table 3. Results on the CIRR Dataset

Methods
Recall@K Rsub@K

Mean
K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

TIRG [52] 14.61 48.37 64.08 90.03 22.67 44.97 65.14 35.52
MAAF [15] 10.31 33.03 48.30 80.06 21.05 41.81 61.60 27.04
CIRPLANT [40] 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88
ARTEMIS [13] 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05
CLIP4Cir [4] 39.75 73.71 83.90 96.87 70.92 87.42 94.19 72.32
CompoDiff [20] 39.99 73.63 86.77 96.55 68.41 86.12 94.80 71.02

SPIRIT (Ours) 40.23 75.10 84.16 96.88 73.74 89.60 95.93 74.42

Best scores are highlighted in bold and underlined formats. Mean = (R@5 + Rsub@1)/2.
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Table 4. Results on the Fashion200k Dataset

Methods Venues R@10 R@50 Mean

TIRG [52] CVPR 2019 42.5 63.8 53.2
VAL [8] CVPR 2020 49.0 68.8 58.9
DCNet [32] AAAI 2021 46.9 67.6 57.3
CosMo [37] CVPR 2021 50.4 69.3 59.8
FashionVLP [18] CVPR 2022 49.9 70.5 60.2
ARTEMIS [13] ICLR 2022 51.1 70.5 60.8
Css-Net [60] Arxiv 2023 50.5 69.7 60.1
ComqueryFormer [56] TMM 2023 52.2 72.2 62.2

SPIRIT (Ours) — 55.2 73.6 64.4

Best scores are highlighted in bold and underlined formats.

Table 5. Ablation Study on the FashionIQ Dataset of Different Components

Methods R@10 R@50 Mean

Baseline [4] 38.32 61.74 50.03
Baseline + PSC 38.39 63.82 52.11
Baseline + PSC + PSD 42.96 66.28 54.62
Baseline + PSC + PSD + PSF 43.45 66.71 55.08

Baseline + PSC + PSD + PSF + VTF (Ours) 43.88 67.20 55.54

on the FashionIQ dataset. Our proposed approach also outperforms the existing state-of-the-art
methods [4, 9, 56] in each metric, achieving an average improvement of 1.11%, 2.10%, and 2.20% on
the Shoes, CIRR, and Fashion200k datasets, respectively. This demonstrates the effectiveness and
generalizability of the proposed SPIRIT.

4.3 Ablation Studies

4.3.1 Effects of Key Designs. To investigate the effectiveness of SPIRIT, we evaluate the key
designs on the FashionIQ dataset, respectively. We add each component incrementally to verify
the effect of each component, shown in Table 5.

In the table, the first row shows the results of baseline method [4]. When PSF is not adopted, we
concatenate features from PSC and PSD directly. When VTF is not adopted, the original combiner
from the baseline method is applied.

By comparing the experimental results from the tables, each component adopted in the experi-
ment plays a role in improving the final results. Specifically, PSC generates the style commonality
feature between split patches by thoroughly interacting between patches, increasing the model’s
ability to better distinguish different fashion styles by combining the local information between
patches. PSD further models the differences among patches through a graph reasoning network
and filters out unimportant areas through adaptive calculation of patches’ weight to improve the
model’s ability to distinguish between those with a sense of design that have significant differences
in the local areas. PSF complements the mutual style information from PSC and PSD and gets the
visual features containing rich information. Finally, VTF fully integrates the visual features con-
taining rich semantic information with the textual features through the hierarchical operation of
information mining within the modalities and mapping between the modalities to the common
space. Therefore, the mapping ability between the text description of the style and the correspond-
ing images is further improved.
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Table 6. Parameter Analysis on the

FashionIQ Dataset on Different Layers in

PSD, Denoted as N

Methods R@10 R@50 Mean

N = 2 42.71 66.38 54.55
N = 3 43.88 67.20 55.54

N = 4 43.42 67.31 55.37
N = 5 43.70 66.98 55.34

Fig. 3. Qualitative results on FashionIQ and Shoes. We show reference images with blue boxes on the left

and top-10 retrievals with descending scores on the right. Ground truths are shown with green boxes, and

others are shown in red boxes.

4.3.2 Effects of Key Parameters. SPIRIT has a key parameter, the number of graph layers in PSD.
The results are shown in Table 6. For the number of graph layers, when the number of layers is
low, the model does not own the ability to fully learn the differences between patches, and the
commonality between patches dominates. When the number of layers increases, the differences
between patches become more important. Therefore, an appropriate number of layers can simul-
taneously consider the differences and commonalities between patches. From the results shown
in Table 6, the most appropriate layer number is 3.

4.4 Qualitative Analysis

4.4.1 Qualitative Results. We show the references images, related textual feedback and top-10
retrievals predicted by our approach in Figure 3. Ground truths are shown with green boxes. From
the experimental results, our approach can not only retrieve the target image in the low-rank re-
call but also the other retrieval results are highly related to the textual feedback. The first, second,
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Fig. 4. t-SNE visualizations with the predictions of SPIRIT and the baseline method [4].

and fourth rows of feedback shown in the figure are all related to style, and our approach also
shows good performance. Among them, the modification requirements of the fourth row are rela-
tively simple. Our PSC can complete the target image retrieval according to the common features
between patches, which are the basic patterns of plaid shirts. However, the first two rows define
style in a relatively abstract way. The country style in the first row not only needs PSC to find
out the commonness in patches, which are the colors like the same earth color but also needs PSD
to ensure that there are no large design differences among patches. In the second-row demand,
whimsical style is characterized by different partial design differences. Therefore, our PSD plays a
dominant role and can identify target images in a small range.

4.4.2 Qualitative Results on Style. We select similar products from categories wedding shoes,
stiletto, and high heels, where the category wedding shoes is labeled brown, the stiletto is labeled
light blue, and high heels are labeled dark blue. We visualize the features extracted from our ap-
proach and the baseline method using t-SNE [50]. From the results shown in Figure 4, in (a) there
are three distinct cluster centers, while in (b), the points are mixed together without distinguishing
the boundary. Since these three categories are highly similar in terms of global features such as
color and overall appearance, the baseline method is not good at distinguishing these three cate-
gories. Our approach not only considers the local details such as the thickness and length of the
heel, so as to distinguish the two types of stiletto and high heels but also makes use of the local
decorative details to subdivide the two similar types of wedding shoes and stiletto.

4.4.3 Failure Cases Analysis. Figure 5 shows typical failure cases using our approach. From the
results shown in the figure, we find that our failure cases mainly come from the modification, which
does not match the target image well. As shown in the first line of the figure, feedback contains
too little information compared with the style of the target image and cannot accurately reflect
the characteristics of the target. The top several retrieval results returned by our model are also
consistent in feedback. It is worth noting that the feedback of the western style in the second line
of the figure is too broad, and the image with the highest score retrieved by our method contains
a cross, proving that it connects the cross, a typically western object, with the word western.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 6, Article 167. Publication date: March 2024.



167:14 Y. Chen et al.

Fig. 5. Failure cases of our method. Qualitative results on FashionIQ and Shoes. We show reference images

with blue boxes on the left, ground truths with yellow boxes in the middle and wrong retrievals with red

boxes on the right.

5 CONCLUSION

In this work, we tackle the challenge of underutilized style information in fashion images by ex-
plicitly defining style as the commonalities and differences between patches. Building upon this,
we introduce a SPIRIT. Our proposed SPIRIT consists of three components. PSC and PSD help to
model the style commonality and difference features with the interaction with the patches, respec-
tively. By fusing the complementary information contained in the two features, the style feature
is obtained, and the rich information within and between modalities is fused by VTF.

The future work lies in two aspects: First, we will improve the interpretability of the approach
and model more possible causes of influence on style. Second, we will further enhance the inte-
gration ability of vision and short text, and improve the reasoning ability of the model. Both of
them will be employed to further boost the accuracy of the task of fashion image retrieval with
text feedback.
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